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ABSTRACT
We develop a tableau-based decision procedure for the full
coalitional multiagent temporal-epistemic logic of linear time
CMATEL(CD+LT). It extends LTL with operators of
common and distributed knowledge for all coalitions of agents.
The tableau procedure runs in exponential time, matching
the lower bound obtained by Halpern and Vardi for a frag-
ment of our logic, thus providing a complexity-optimal de-
cision procedure for CMATEL(CD+LT).
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1. INTRODUCTION
Knowledge and time are among the most important as-

pects of multiagent systems. Various temporal-epistemic
logics, proposed as logical frameworks for reasoning about
these ascpects of multiagent systems were studied in a num-
ber of publications during the 1980’s, eventually summa-
rized in a uniform and comprehensive study by Halpern and
Vardi [4]. In [4], the authors considered several essential
characteristics of temporal-epistemic logics: one vs. sev-
eral agents, synchrony vs. asynchrony, (no) learning, (no)
forgetting, linear vs. branching time, and the (non-) exis-
tence of a unique initial state. Based on these, they iden-
tify and analyze 96 temporal-epistemic logics and obtain
lower bounds for the complexity of a satisfiability problem
in each of them. It turns out that most of the logics with
more than one agent who do not learn or do not forget,
are undecidable (with common knowledge), or decidable but
with non-elementary time lower bound (without common
knowledge). For the remaining multiagent logics, the lower
bounds from [4] range from PSPACE (systems without com-
mon knowledge), through EXPTIME (with common knowl-
edge), to EXPSPACE (synchronous systems with no learn-
ing and unique initial state). To the best of our knowledge,
however, even for the logics from [4] with a relatively low
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complexity lower bound, no decision procedures with match-
ing upper bounds have been developed. In this paper, we
set out to develop such decision procedures based on in-
cremental tableaux, starting with the multiagent case over
linear time, which involves no essential interaction between
knowledge and time. It turns out that, under no other as-
sumptions regarding learning or forgetting, the synchronous
and asynchronous semantics are equivalent with respect to
satisfiability. We consider a more expressive epistemic lan-
guage than the ones considered in [4], to wit, the one in-
volving operators for common and for distributed knowl-
edge for all coalitions of agents. We call the resulting logic
CMATEL(CD+LT) (“Coalitional Multi-Agent Temporal
Epistemic Logic with operators for Common and Distributed
knowledge and Linear Time”). The decision procedure for
satisfiability in CMATEL(CD+LT) developed herein runs
in exponential time, which together with the lower bound
for the fragment of CMATEL(CD+LT) obtained in [4],
implies EXPTIME-completeness of CMATEL(CD+LT).

2. THE LOGIC CMATEL(CD+LT)

2.1 Syntax
The language L of CMATEL(CD+LT) contains a set

AP of atomic propositions, a sufficient repertoire of Boolean
connectives, say ¬ (“not”) and ∧ (“and”), the temporal op-
erators �(“next”) and U (“until”) of the logic LTL, as well
as the epistemic operators DAϕ (“it is distributed knowl-
edge among agents in A that ϕ”), and CAϕ (“it is common
knowledge among agents of A that ϕ”) for every non-empty
A ⊆ Σ, where Σ is the set of names of agents belonging to
L. The set Σ is assumed to be finite and non-empty; its
subsets are called coalitions (of agents). Thus, the formulae
of CMATEL(CD+LT) are defined as follows:

ϕ := p | ¬ϕ | (ϕ1 ∧ ϕ2) | �ϕ | (ϕ1 Uϕ2) | DAϕ | CAϕ

where p ranges over AP and A ranges over the set of non-
empty subsets of Σ, henceforth denoted P+(Σ). We write
ϕ ∈ L to mean that ϕ is a formula of L.

The operators of individual knowledge Kaϕ, where a ∈ Σ
(“agent a knows that ϕ”), can then be defined as D{a}ϕ,
henceforth written Daϕ. The other Boolean and temporal
connectives can be defined as usual. We omit parentheses
when this does not result in ambiguity.

Formulae of the form ¬CAϕ are epistemic eventualities,
while those of the form ϕ Uψ are temporal eventualities.

N = {0, 1, . . .} denotes the set of natural numbers.
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2.2 Semantics

Definition 2.1. A temporal-epistemic system (TES) is
a tuple G = (Σ, S, R, {RD

A}A∈P+(Σ), {R
C
A}A∈P+(Σ)), where:

1. Σ is a finite, non-empty set of agents;

2. S �= ∅ is a set of states;

3. R is a non-empty set of runs; where each r ∈ R is a
function r : N �→ S. A pair (r, n), where r ∈ R and
n ∈ N, is called a point. The set of all points in G is
denoted P (G). Every point (r, n) represents the state
r(n); note, however, that different points can represent
the same state.

4. for every A ∈ P+(Σ), RD
A and RC

A are binary relation
on P(G), such that RC

A is the reflexive and transitive
closure of

S

A′⊆ARD
A′ .

Definition 2.2. A temporal-epistemic frame (TEF) is
a TES G = (Σ, S, R, {RD

A}A∈P+(Σ), {R
C
A}A∈P+(Σ)), where

each RD
A is an equivalence relation satisfying the following

condition: (†) RD
A =

T

a∈AR
D
{a}. If condition (†) is re-

placed by the following: (††) RD
A ⊆ RD

B whenever B ⊆ A,
then F is a temporal-epistemic pseudo-frame (pseudo-TEF).

Notice that, in (pseudo-)TEFs, RC
A is the transitive clo-

sure of
S

a∈ARD
{a} and, thus, an equivalence relation.

Definition 2.3. A temporal-epistemic model (TEM, for
short) is a tuple M = (F, L), where

(i) F is a TEF with a set of runs R;
(ii) L : R×N �→ P(AP) is a labeling function, where L(r, n)

is the set of atomic propositions true at (r, n).

If the condition (i) is replaced by the requirement that F is a
pseudo-TEF, then M is a temporal-epistemic pseudo-model
(pseudo-TEM).

A TES G is called synchronous if for every A ∈ P+(Σ), if
((r, n), (r′, n′)) ∈ RD

A , then n = n′. Synchronous temporal-
epistemic (pseudo)-models are defined accordingly. Here-
after we consider the general case, but all definitions and
results apply likewise to the synchronous case, unless stated
otherwise. The tableau construction can accommodate the
synchronous case at no extra cost and eventually we show
that, under no other assumptions, the presence or absence
of synchrony does not affect the satisfiability of formulae.

Definition 2.4. The satisfaction of formulae at points in
(pseudo-)TEMs is defined as follows:
M, (r, n) � p iff p ∈ L(r, n);
M, (r, n) � ¬ϕ iff not M, (r, n) � ϕ;
M, (r, n) � ϕ ∧ ψ iff M, (r, n) � ϕ and M, (r, n) � ψ;
M, (r, n) � �ϕ iff M, (r, n + 1) � ϕ;
M, (r, n) � ϕ Uψ iff M, (r, i) � ψ for some i ≥ n

such that M, (r, j) � ϕ for every n ≤ j < i;
M, (r, n) � DAϕ iff M, (r′, n′) � ϕ

for every ((r, n), (r′, n′)) ∈ RD
A ;

M, (r, n) � CAϕ iff M, (r′, n′) � ϕ
for every ((r, n), (r′, n′)) ∈ RC

A;

Note, that in the semantics defined above the labelling
function acts on points, not states, i.e., it is point-based. To
make the semantics state-based, one must impose the addi-
tional condition: if r(n) = r′(n′) then L(r, n) = L(r′, n′).

However, for the case of linear time logics these two seman-
tics are equivalent in terms of satisfiability and validity (this
is an easy consequence of the fact that, in the linear case, all
epistemic operators have built-in implicit universal quantifi-
cation over paths).

The satisfaction condition for the operator CA can be
paraphrased in terms of reachability. Let F be a (pseudo-)
TEF over the set of runs R and let (r, n) ∈ R × N. We
say that a point (r′, n′) is A-reachable from (r, n) if either
r = r′ and n = n′ or there exists a sequence (r, n) =
(r0, n0), (r1, n1), . . . , (rm−1, nm−1), (rm, nm) = (r′, n′) of points
in R×N such that, for every 0 ≤ i < m, there exists ai ∈ A
such that ((ri, ni), (ri+1, ni+1)) ∈ RD

ai
. Then, the satisfac-

tion condition for CA becomes equivalent to the following:
M, (r, n) � CAϕ iff M, (r′, n′) � ϕ whenever (r′, n′) is

A-reachable from (r, n).
Satisfiability and validity in (a class of) models is defined

as usual.
It is easy to see that if Σ = {a}, then Daϕ ↔ Caϕ is valid

in every TEM for every ϕ ∈ L. Thus, the single-agent case
is essentially trivialized and, therefore, we assume hereafter
that Σ contains at least 2 (names of) agents.

3. HINTIKKA STRUCTURES
Even though we are ultimately interested in testing for-

mulae of L for satisfiability in a TEM, the tableau procedure
we present tests for satisfiability in a more general kind of
semantic structures, namely a Hintikka structure. We will
show that θ ∈ L is satisfiable in a TEM iff it is satisfiable in
a Hintikka structure, hence the latter test is equivalent to
the former. The advantage of working with Hintikka struc-
tures lies in the fact that they contain as much semantic
information about θ as is necessary, and no more. More
precisely, while models provide the truth value of every for-
mula of L at every state, Hintikka structures only determine
the truth of formulae directly involved in the evaluation of
a fixed formula θ, in whose satisfiability we are interested.
Another important difference between models and Hintikka
structures is that, in Hintikka structures the epistemic re-
lations RD

A and RC
A only have to satisfy the properties laid

down in Definition 2.1. All the other information about the
desirable properties of epistemic relations is contained in
the labeling of states in Hintikka structures. This labeling
ensures that every Hintikka structure generates a pseudo-
model (by the construction of Lemma 3.5), which can then
be turned into a model using the construction of Lemma 3.9.

Definition 3.1. A set Δ ⊆ L is fully expanded if it sat-
isfies the following conditions (Sub(ψ) stands for the set of
subformulae of ψ):

1. if ¬¬ϕ ∈ Δ then ϕ ∈ Δ;

2. if ϕ ∧ ψ ∈ Δ, then ϕ ∈ Δ and ψ ∈ Δ;

3. if ¬(ϕ ∧ ψ) ∈ Δ then ¬ϕ ∈ Δ or ¬ϕ ∈ Δ;

4. if ¬ �ϕ ∈ Δ then �¬ϕ ∈ Δ;

5. if ϕ Uψ ∈ Δ then ψ ∈ Δ or ϕ, �(ϕ Uψ) ∈ Δ;

6. if ¬(ϕ Uψ) ∈ Δ then ¬ψ,¬ϕ ∈ Δ or ¬ψ,¬ �(ϕ Uψ) ∈
Δ;

7. if DAϕ ∈ Δ then DA′ϕ ∈ Δ for every A′ such that
A ⊆ A′ ⊆ Σ;

8. if DAϕ ∈ Δ then ϕ ∈ Δ;

9. if CAϕ ∈ Δ then Da(ϕ ∧ CAϕ) ∈ Δ for every a ∈ A;
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10. if ¬CAϕ ∈ Δ then ¬Da(ϕ∧CAϕ) ∈ Δ for some a ∈ A;

11. if ψ ∈ Δ and DAϕ ∈ Sub(ψ) then either DAϕ ∈ Δ or
¬DAϕ ∈ Δ.

Definition 3.2. A temporal-epistemic Hintikka structure
(TEHS) is a tuple (Σ, S, R, {RD

A}A∈P+(Σ), {R
C
A}A∈P+(Σ), H)

such that (Σ, S, R, {RD
A}A∈P+(Σ), {R

C
A}A∈P+(Σ)) is a TES,

and H is a labeling of points in R×N with sets of formulae,
satisfying the following conditions, for all (r, n) ∈ R × N:

H1 if ¬ϕ ∈ H(r, n), then ϕ /∈ H(r, n);

H2 H(r, n) is fully expanded;

H3 if �ϕ ∈ H(r, n), then ϕ ∈ H(r, n + 1);

H4 if ϕ Uψ ∈ H(r, n), then there exists i ≥ n such that
ψ ∈ H(r, i) and ϕ ∈ H(r, j) holds for every n ≤ j < i;

H5 if ¬DAϕ ∈ H(r, n), then there exists r′ ∈ R and n′ ∈ N

such that ((r, n), (r′, n′)) ∈ RD
A and ¬ϕ ∈ H(r′, n′);

H6 if ((r, n), (r′, n′)) ∈ RD
A , then DA′ϕ ∈ H(r, n) iff DA′ϕ ∈

H(r′, n′), for every A′ ⊆ A;

H7 if ¬CAϕ ∈ H(r, n), then there exists r′ ∈ R and n′ ∈ N

such that ((r, n), (r′, n′)) ∈ RC
A and ¬ϕ ∈ H(r′, n′).

Synchronous TEHSs (STEHSs) are defined likewise.

Definition 3.3. A set of formulae Θ is satisfiable in a
TEHS H with a labeling function H if there exists a point
(r, n) ∈ H such that Θ ⊆ H(r, n). Analogously for formulae.

Now, we show that θ ∈ L is satisfiable in a TEM iff it is
satisfiable in a TEHS. One direction is almost immediate,
as every TEM naturally induces a TEHS. More precisely,
given a TEM M, define the extended labeling L+ on the set
of points of M as follows: L+(r, n) = {ϕ | M, (r, n) � ϕ }
for every (r, n). The following claim is then straightforward.

Lemma 3.4. Let M = (F, L) be a TEM satisfying θ ∈
L, and let L+ be the extended labeling on M. Then, H =
(F, AP, L+) is a TEHS satisfying θ.

For the opposite direction, we first prove that the ex-
istence of a TEHS satisfying θ implies the existence of a
pseudo-model satisfying θ; then, we show that this in turn
implies the existence of a model satisfying θ.

Lemma 3.5. Let θ ∈ L be such that there exists a TEHS
for θ. Then, θ is satisfiable in a pseudo-TEM.

Proof. Let H = (Σ, S, R, {RD
A}A∈P+(Σ), {R

C
A}A∈P+(Σ),

H) be a TEHS for θ. We build a pseudo-TEM satisfying θ
as follows. First, for every A ∈ P+(Σ), let R′D

A be the re-
flexive, symmetric, and transitive closure of

S

A⊆BRD
B and

let R′C
A be the transitive closure of

S

a∈AR
′D
a . Notice that

RD
A ⊆ R′D

A and RC
A ⊆ R′C

A for every A ∈ P+(Σ). Next,
let L(r, n) = H(r, n) ∩ AP, for every point (r, n) ∈ R × N.
It is then easy to check that M′ = (Σ, S, R, {R′D

A }A∈P+(Σ),

{R′C
A }A∈P+(Σ), AP, L) is a pseudo-TEM. It is also easy to

check that the construction preserves synchrony.
To complete the proof of the lemma, we show, by induc-

tion on the formula χ ∈ L that, for every point (r, n) and
every χ ∈ L, the following hold:

(i) χ ∈ H(r, n) implies M′, (r, n) � χ;
(ii) ¬χ ∈ H(r, n) implies M′, (r, n) � ¬χ.
Let χ be some p ∈ AP. Then, p ∈ H(r, n) implies p ∈

L(r, n) and thus, M′, (r, n) � p; if, on the other hand, ¬p ∈

H(r, n), then due to (H1), p /∈ H(r, n) and thus p /∈ L(r, n);
hence, M′, (r, n) � ¬p.

Assume that the claim holds for all subformulae of χ; then,
we have to prove that it holds for χ, as well.

Suppose that χ = ¬ϕ. If ¬ϕ ∈ H(r, n), then the inductive
hypothesis immediately gives us M′, (r, n) � ¬ϕ; if, on the
other hand, ¬¬ϕ ∈ H(r, n), then by virtue of (H2), ϕ ∈
H(r, n) and hence, by inductive hypothesis, M′, (r, n) � ϕ
and thus M′, (r, n) � ¬¬ϕ.

The cases of χ = ϕ ∧ ψ and χ = �ϕ are straightforward,
using (H2) and (H3).

Suppose that χ = DAϕ. Assume, first, that DAϕ ∈
H(r, n). In view of the inductive hypothesis, it suffices
to show that ((r, n), (r′, n′)) ∈ R′D

A implies ϕ ∈ H(r, n).
Assuming ((r, n), (r′, n′)) ∈ R′D

A , there are two cases to
consider. If (r, n) = (r′, n′), then the conclusion immedi-
ately follows from (H2). Otherwise, there exists an undi-
rected path from (r, n) to (r′, n′) along the relations RD

A′ ,
where each A′ is a superset of A. Then, due to (H6),
DAϕ ∈ H(r′, n′); hence, by (H2), ϕ ∈ H(r′, n′), as desired.

Now, let ¬DAϕ ∈ H(r, n). By (H5), there exist r′ ∈ R
and n′ ∈ N such that ((r, n), (r′, n′)) ∈ RD

A and ¬ϕ ∈
H(r′, n′). As RD

A ⊆ R′D
A , the claim follows from the in-

ductive hypothesis.
Suppose that χ = CAϕ. Assume that CAϕ ∈ H(r, n). By

inductive hypothesis, it suffices to show that if (r′, n′) is A-
reachable from (r, n), then ϕ ∈ H(r′, n′). If (r, n) = (r′, n′)
the claim follows from (H2). So, suppose for some m ≥
1, there exists a sequence of points (r, n) = (r0, n0), . . . ,
(rm−1, nm−1), (rm, nm) = (r′, n′) such that, for every 0 ≤
i < m, there exists ai ∈ A such that ((ri, ni), (ri+1, ni+1)) ∈
R′D

ai
. Then, for every 0 ≤ i < m, there exists ai ∈ A such

that ((ri, ni), (ri+1, ni+1)) ∈ Rai . We can then show by
induction on i, using (H2) and (H6), that CAϕ ∈ H(ri, ni)
holds for every 0 ≤< m; hence, Dai(ϕ ∧ CAϕ) ∈ H(ri, ni).
Therefore, ϕ ∈ H(ri+1, ni+1) by (H2) and (H6). By taking
i = m − 1 we obtain ϕ ∈ H(r′, n′), as required.

Now, assume ¬CAϕ ∈ H(r, n). Then, the claim follows
from (H7) and the inductive hypothesis, since RC

A ⊆ R′C
A .

Suppose that χ = ϕ Uψ. If ϕ Uψ ∈ H(r, n), then the
conclusion immediately follows from (H4) and the inductive
hypothesis. Suppose, on the other hand, that ¬(ϕ Uψ) ∈
H(r, n). Then, by (H2), ¬ψ,¬ϕ ∈ H(r, n) or ¬ψ, �¬(ϕ Uψ)
∈ H(r, n). In case former case, the inductive hypothesis
immediately gives us the desired result. In the latter, in-
ductive hypothesis gives us M, (r, n) � ψ and (H3) gives
us ¬(ϕ Uψ) ∈ H(r, n + 1). Now the argument can be re-
peated. Ultimately, using inductive hypothesis, we either
get a finite path (r, n), . . . , (r, i) such that M, (r, i) � ϕ and
M, (r, j) � ψ holds for all n ≤ j ≤ i, or we get an infinite
path (r, n), (r, n+1), . . . such that M, (r, i) � ψ for all i ≥ n.
In either case, M, (r, n) � ψ Uψ.

To show that satisfiability of a formula in a pseudo-TEM
implies its satisfiability in a TEM, we use a modification of
the construction from [1, Appendix A1] (see also [6]).

Definition 3.6. Let M = (Σ, S, R, {RD
A}A∈P+(Σ),

{RC
A}A∈P+(Σ), AP, L) be a (pseudo-)TEM and let r, r′ ∈ R

and n, n′ ∈ N. A maximal path from (r, n) to (r′, n′) in M is
a sequence (r, n) = (r0, n0), A0, (r1, n1), . . . , Am−1, (rm, nm)
= (r′, n′) such that, for every 0 ≤ i < m, ((ri, ni), (ri+1, ni+1))
∈ RD

Ai
, but ((ri, ni), (ri+1, ni+1)) /∈ RD

B for any B such that
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Ai ⊂ B ⊆ Σ. A segment ρ′ of a maximal path ρ starting
and ending with a point is a sub-path of ρ.

Definition 3.7. Let ρ = (r0, n0), A0 . . . , An−1, (rm, nm)
be a maximal path in M. The reduction of ρ is obtained by,
first, replacing in ρ every longest sub-path (rp, np), Ap, (rp+1,
np+1) . . . , Ap+q−1, (rp+q, np+q) such that rp = rp+1 = . . . =
rp+q with rp (i.e., eliminating loops) and, then, by replacing
in the resultant path every longest sub-path (rj , nj), Aj , (rj+1,
nj+1) . . . , Aj+m−1, (rj+m, nj+m) such that Aj = Aj+1 =
. . . = Aj+m−1 with (rj , nj), Aj , (rj+m, nj+m) (reducing mul-
tiple transitions along the same relation into a single transi-
tion). A maximal path is reduced if it equals its reduction.

Definition 3.8. A (pseudo-)TEM M is forest-like if, for
every r, r′ ∈ R and every n, n′ ∈ N, there exists at most one
reduced maximal path from (r, n) to (r′, n′).

One difference of the construction presented below from
the one in [1, Appendix A1] is that, instead of producing a
tree-like model, we rather produce a forest-like one, partly
since every “temporal level” of the model we are going to
build will not be connected by epistemic relations to any
other temporal level, and partly because even within a single
temporal level we will, in general, construct more than one
“epistemic tree”.

Lemma 3.9. If θ ∈ L is satisfiable in a (synchronous)
pseudo-TEM, then it is satisfiable in a (synchronous) forest-
like TEM.

Proof. We will only consider the synchronous case, as
it requires extra care. Suppose that θ is satisfied in a syn-
chronous pseudo-TEM M = (Σ, S, R, {RD

A}A∈P+(Σ),

{RC
A}A∈P+(Σ), AP, L) at a point (r, n). To build a synchronous

forest-like TEM M′ satisfying θ, we use the modified tree-
unraveling technique. First, every “epistemic tree” within
a temporal level of the model will be made up of all maxi-
mal paths, rather than all paths, as in the standard tree-
unraveling, since we want to ensure that paths between
points are unique with respect to the relations RD

A indexed
by maximal coalitions, which will allow us to fix “defects”
with respect to the D-relations. Second, every level will,
in general, be made up of more than one epistemic tree, as
every point at level m �= 0 created as part of temporal run
starting at a level k < m, will be a root of a separate tree.

The construction starts by taking a submodel M(r,n) of
M generated by the point x = (r, n) at which θ is satisfiable.

Next, we define M′ by recursion on the temporal levels.
We view a level k as partitioned into clusters {Sk

1 , Sk
2 , . . .},

such that if ((r, k), (r′, k)) ∈ Sk
i , there is an (undirected)

path along D-relations between (r, k) and (r′, k).
We start from level 0, corresponding to level n in M and

level 0 in M(r,n). This level contains only one cluster S0,
generated by point x. In general, however, a level k will
have more than one cluster, so we describe the construction
in more general terms. At level k, for each cluster Sk

i , we
choose arbitrarily a point (ri, k) ∈ Sk

i (at level 0, however,
we choose x); this point is going to be the root of an epis-
temic tree associated with that cluster. Now, we call a max-
imal path ρ in M a (ri, k)-max-path if the first component of
ρ is (ri, k). We denote the last element of ρ by l(ρ). Notice

that (ri, k) is by itself an (ri, k)-max-path. Now, let bSk
i be

the set of all (ri, k)-max-paths in M. For every A ∈ P+(Σ),

let R∗D
A = { (ρ, ρ′) | ρ, ρ′ ∈

S

i
bSk

i and ρ′ = ρ, A, l(ρ′) }.
Let, furthermore, R′D

A to be the reflexive, symmetric, and
transitive closure of R∗D

A . Notice that (ρ, ρ′) ∈ R′D
A holds

iff one of the paths ρ and ρ′ extends the other by a sequence

of A-steps. Therefore, two different states in
S

i
bSk

i can
only connected by R′D

A for at most one maximal coalition A.
Further, we stipulate the following downwards closure condi-
tion: whenever (ρ, τ) ∈ R′D

A and B ⊆ A, then (ρ, τ) ∈ R′D
B .

The relations R′C
A are then defined as in any TEF.

We next describe how to create level m+1 of M′ assuming
that level m has already been defined. First, carry out for
m + 1 the construction described in the previous paragraph
for an arbitrary level k. Secondly, for every pair of states

ρ ∈
S

i
bSm

i and τ ∈
S

i
bSm+1

i make (τ, m + 1) a temporal
successor of (ρ, m) if l(τ) is a such successor of l(ρ) in M.

To complete the definition of M′, we put L′(ρ) = L(l(ρ))
for every ρ ∈ P (M′), where P (M′) is the set of points of
M′. It is clear from the construction, namely from the down-
ward saturation condition above, that M′ is a synchronous
pseudo-TEM. We now show that it is a TEM satisfying θ.

To prove the first part of the claim, we need extra ter-
minology. We call a maximal path ρ1, A1, ρ2, . . . , An−1, ρn

in M′ primitive if, for every 0 ≤ i < n, either (ρi, ρi+1) ∈
R∗D

Ai
or (ρi+1, ρi) ∈ R∗D

Ai
. A primitive path ρ1, A1, ρ2, . . . ,

An−1, ρn is non-redundant if there is no 0 ≤ i < n such that
ρi = ρi+2 and Ai = Ai+1. Intuitively, in a non-redundant
path we never go from a state ρ (forward or backward) along
a relation and then immediately back to ρ along the same
relation. Since the relations R∗D

A are edges of a tree, it im-
mediately follows that (S′ denotes the state space of M′):

(‡) for every pair of states ρ, τ ∈ S′, there exists at most
one non-redundant primitive path from ρ to τ .

Lastly, we call a primitive path ρ1, A, ρ2, . . . , A, ρn an A-
primitive path.

We will now show that maximal reduced paths in M′

stand in one-to-one correspondence with non-redundant prim-
itive paths. It will then follow from (‡) that maximal re-
duced paths between any two states of M′ are unique, and
thus M′ is forest-like, as claimed. Let P = ρ1, A1, . . . ,
An−1, ρn, where ρ1 = ρ and ρn = τ , be a maximal reduced
path from ρ to τ in M′. Since (ρi, ρi+1) ∈ R′D

Ai
, there exists

a non-redundant Ai-primitive path from ρi to ρi+1, which in
view of (‡) is unique. Let us obtain a path P ′ from ρ to τ by
replacing in ρ every link (ρi, Ai, ρi+1) by the corresponding
non-redundant Ai-primitive path from ρi to ρi+1. Call P ′

an expansion of P . In view of (‡), every path has a unique
expansion. Now, it is easy to see that P is a reduction of
P ′. Since the reduction of a given path is unique, too, it fol-
lows that there exists a one-to-one correspondence between
reduced paths and non-redundant primitive paths in M′.

We now prove that R′D
A =

T

a∈AR
′D
a for every A ∈

P+(Σ), and hence M′ is a TEM. The left to right inclusion is
immediate, as M′ is pseudo-TEM. For the other direction,
assume that ((r, n), (r′, n)) ∈ R′D

a holds for every a ∈ A.
Then, for every a ∈ A, there exists a path, and therefore a
maximal reduced path, from (r, n) to (r′, n) along relations
R′D

A′ such that a ∈ A′. As M′ is forest-like, there is only
one maximal reduced path from (r, n) to (r′, n). Therefore,
the relations RD

A′ linking (r, n) to (r′, n) along this path are
such that A ⊆ A′ for every A′. Then, by the downwards clo-
sure condition, there is a path from (r, n) to (r′, n) along the
relation R′D

A and, hence, ((r, n), (r′, n)) ∈ R′D
A , as desired.
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Finally, it remains to prove that M′ satisfies θ. First,
notice that (ρ, τ) ∈ R′

A iff there exists an A-primitive path
from ρ to τ . Hence, as every RA is an equivalence relation,
if (ρ, τ) ∈ R′

A, then (l(ρ), l(τ)) ∈ R′
A. It is now straightfor-

ward to check that the relation Z = { (ρ, l(ρ) | ρ ∈ S′ } is
a bisimulation between M′ and M. Since (x, l(x)) ∈ Z, it
follows that M′, x � θ, and we are done.

Theorem 3.10. Let θ ∈ L. Then, θ is satisfiable in a
TEM iff there exists a TEHS satisfying θ.

Proof. Immediate from Lemmas 3.4, 3.5 and 3.9.

4. TABLEAUX FOR CMATEL(CD + LT)
In the present section, we describe the tableau procedure

for testing formulae of CMATEL(CD+LT) for satisfiabil-
ity in synchronous systems, as this case requires more care.
We then briefly mention how to modify the procedure for
asynchronous case and argue the the output of both proce-
dures for the same input formula is the same, implying the
equivalence of two semantics.

4.1 Overview of the tableau procedure
The tableau procedure for testing a formula θ ∈ L for

satisfiability attempts to construct a non-empty graph T θ

(called tableau), whose nodes are finite subsets of L, rep-
resenting sufficiently many TEHSs, in the sense that, if θ
is satisfiable in a TEHS, it is satisfiable in a one repre-
sented by a tableau for θ. The philosophy underlying our
tableau algorithm is essentially the same as the one under-
pinning the tableau procedure for LTL from [7], recently
adapted to multiagent epistemic logics in [2]; this philoso-
phy can be traced back to [5]. To make the present paper
self-contained, we outline the basic ideas behind our tableau
algorithm in line with those references. The particulars of
the tableaux presented here, however, are specific to CMA-
TEL(CD+LT).

Usually, tableaux work by decomposing the input formula
into simpler formulae. In the classical propositional case,
“simpler” implies shorter, thus ensuring the termination of
the procedure. The decomposition into simpler formulae in
the tableau for classical propositional logic produces a tree
representing an exhaustive search for a Hintikka set (the
classical analogue of Hintikka structures) for the input for-
mula θ. If at least one leaf of that tree produces a Hintikka
set for θ, the search has succeeded and θ is pronounced sat-
isfiable; otherwise it is declared unsatisfiable.

When applied to logics containing fixpoint-definable op-
erators, such as CA and U , these two defining features of
the classical tableau method no longer apply. First, the de-
composition of fixpoint formulae, which is done by unfolding
their fixpoint definitions, produces larger formulae: CAϕ is
decomposed into formulae of the form Da(ϕ ∧ CAϕ), while
ϕ Uψ is decomposed into ψ and ϕ ∧ �(ϕ Uψ). Hence, we
need a termination-ensuring mechanism. In our tableaux,
such a mechanism is provided by the use (and reuse) of so
called “prestates”, whose role is to ensure the finiteness of
the construction and, hence, termination of the procedure.
Second, the only reason why a tableau may fail to produce
a Hintikka set for the input formula in the classical case
is that every attempt to build such a set results in a col-
lection of formulae containing a patent inconsistency, i.e.,
a complementary pair of formulae ϕ,¬ϕ. In the case of
CMATEL(CD+LT), there are other such reasons, as the

tableaux in this case are meant to represent TEHSs, which
are more involved structures than classical Hintikka sets.
One additional reason has to do with eventualities: the pres-
ence of an eventuality ¬CAϕ in the label of a state s of a
TEHS H requires the existence in H of an A-path from s to
a state t whose label contains ¬ϕ (condition (H7) of Defini-
tion 3.2). An analogous requirement applies to eventualities
of the form ϕ Uψ due to condition (H4) of Definition 3.2.
The tableau analogs of these conditions is called realization
of eventualities. If a tableau contains nodes with unreal-
ized eventualities, then it cannot produce a TEHS, and thus
it is “bad”. The third possible reason for a tableau to be
“bad”has to do with successor nodes: it may so happen that
some of the successors of a node s which are necessary for
the satisfaction of s are unsatisfiable. Notice that TEHSs,
and consequently the associated tableaux, contain two kinds
of “successor” nodes: temporal and epistemic. The non-
satisfiability of either kind of successor can ruin the chances
of a tableau node to correspond to a state of a TEHS.

The tableau procedure consists of three major phases:
pretableau construction, prestate elimination, and state elim-
ination. During the pretableau construction phase, we pro-
duce a directed graph Pθ—called the pretableau for θ—
whose set of nodes properly contains the set of nodes of
the tableau T θ we are building. The nodes of Pθ are sets
of formulae of two kinds: states and prestates. States are
fully expanded sets, meant to represent (labels of) states of
a Hintikka structure, while prestates play a temporary role
in the construction of T θ. During the prestate elimination
phase, we create a smaller graph T θ

0 out of Pθ, called the ini-
tial tableau for θ, by eliminating all the prestates from Pθ

and accordingly redirecting its edges. Finally, during the
state elimination phase, we remove from T θ

0 all the states, if
any, that cannot be satisfied in a TEHS, either because they
contain unrealized eventualities or because they lack a nec-
essary successor (patently inconsistent states are removed
“on the fly” during the state creation stage). The elimina-
tion procedure results in a (possibly empty) subgraph T θ

of T θ
0 , called the final tableau for θ. If some state Δ of T θ

contains θ, we declare θ satisfiable; otherwise, we declare it
unsatisfiable. The construction of the tableau is illustrated
in Example 1 given at the end of Section 4.4.

4.2 Pretableau construction phase
All states and prestates of the pretableau Pθ constructed

during this phase are “time-stamped”, the notation Γ[n] in-
dicating that prestate Γ was created as the nth component
of a run; analogously for states.

The pretableau contains three types of edge, described be-
low. As already mentioned, a tableau attempts to produce
a compact representation of a sufficient number of TEHSs
for the input formula, which are the result of an exhaustive
search for a TEHS satisfying θ. One type of edge, depicted
by unmarked double arrows =⇒, represents the search di-
mension of the tableau. Exhaustive search considers all pos-
sible alternatives, which arise when expanding prestates into
states by branching when dealing with the “disjunctive for-
mulae”. Thus, when we draw a double arrow from a prestate
Γ to states Δ and Δ′ (depicted as Γ =⇒ Δ and Γ =⇒ Δ′,
respectively), this intuitively means that, in any TEHS, a
state whose label extends the set Γ has to contain at least
one of Δ and Δ′. Our first construction rule, (SR), pre-
scribes how to create tableau states from prestates.
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Given a set Γ ⊆ L, we say that Δ is a minimal fully
expanded extension of Γ if Δ is fully expanded, Γ ⊆ Δ,
and there is no Δ′ such that Γ ⊆ Δ′ ⊂ Δ and Δ′ is fully
expanded.

Rule (SR) Given a prestate Γ[n] such that (SR) has not
been applied to (SR) earlier, do the following:

1. Add all minimal fully expanded extensions Δ[n] of Γ[n]

that are not patently inconsistent as states;
2. if Δ[n] contains no formulae �ϕ, add �� to it;
3. for each so obtained state Δ[n], put Γ[n] =⇒ Δ[n];
4. if, however, the pretableau already contains a state

Δ′[m] that coincides with Δ[n], do not create another
copy of Δ′[m], but only put Γ[n] =⇒ Δ′[m].

We denote by states(Γ[n]) the set of states {Δ | Γ[n] =⇒
Δ }. Note that we remove patently inconsistent states “on
the fly”, thus never making them part of a pretableau.

Notice that in all construction rules, as in (SR), we allow
reuse of (pre)states, which were originally stamped with a
possibly different time-stamp. This does not correspond to
one state or prestate being part of two different runs, at
different moments of time (the absolute time is supposed
to be the same in all runs, even though agents may not
be able to observe it, in asynchronous systems); rather, the
“futures” of these runs, starting from the reused (pre)state
can be assumed to be identical, modulo the time difference.

The second type of edge in a pretableau represents epis-
temic relations in the TEHSs that the procedure attempts
to build. This type of edge is represented by single ar-
rows marked with epistemic formulae whose presence in the
source state requires the presence in the tableau of a target
state, reachable by a particular epistemic relation. All such
formulae have the form ¬DAϕ (as can be seen from Defi-

nition 3.2). Intuitively if, say ¬DAϕ ∈ Δ[n], then we need

some prestate Γ[n] containing ¬ϕ to be accessible from Δ[n]

by RD
A (notice that the newly created prestates bear the

same time stamp as the source state; this reflects the fact
that we are considering the synchronous case). The reason
we mark these single arrows not just by a coalition A, but by
a formula ¬DAϕ, is that we have to remember not just what
relation connects states whose labels contain Δ[n] and Γ[n],
but why we had to create this particular Γ[n]. This infor-
mation will be needed when we start eliminating prestates,
and then states. We now formulate the rule producing this
second type of edges in the pretableau.

Rule (DR): Given a state Δ[n] such that ¬DAϕ ∈ Δ[n],

Δ[n] and (DR) has not been applied to Δ[n] earlier, do the
following:

1. Create a new prestate Γ[n] = {¬ϕ} ∪
S

A′⊆A{DA′ψ |

DA′ψ ∈ Δ[n] } ∪
S

A′⊆A{¬DA′ψ | ¬DA′ψ ∈ Δ[n] };

2. connect Δ[n] to Γ[n] with
¬DAϕ
−→ ;

3. if, however, the tableau already contains a prestate
Γ′[n] = Γ[n], do not add another copy of Γ′[n], but

simply connect Δ[n] to Γ′[n] with
¬DAϕ
−→ .

Lastly, the third type of edge, depicted by single unmarked
arrow −→, represents temporal transitions. We now state
the rule that creates such arrows.

Rule (Next): Given a state Δ[n] such that (Next) has

not been applied to Δ[n] earlier, do the following:

1. Create a new prestate Γ[n+1] = {ϕ | �ϕ ∈ Δ[n] };

2. connect Δ[n] to Γ[n+1] with −→;
3. if, however, the tableau already contains a prestate

Γ′[m] = Γ[n+1], do not add another copy of Γ′[m], but
simply connect Δ[n] to Γ′[m] with −→.

Note that, due to step 2 in (SR), every state contains at
least one formula of the form �ϕ.

Having stated the rules, we now describe how the con-
struction phase works. We start off by creating a single
prestate {θ}, where θ is the input formula. Then we alter-
natingly apply (DR) and (Next) to the prestates created
at the previous stage and then applying (SR) to the newly
created states. The construction state is over when the ap-
plications of (DR) and (Next) do not produce any new
prestates.

4.3 Prestate elimination phase
At this phase we remove from Pθ all the prestates and

double arrows, by applying the following rule:

Rule (PR) For every prestate Γ in Pθ, do the following:

1. Remove Γ from Pθ;

2. if there is a state Δ in Pθ with Δ
χ

−→ Γ, then for every

state Δ′ ∈ states(Γ), put Δ
χ

−→ Δ′;

3. if there is a state Δ in Pθ with Δ −→ Γ, then for every
state Δ′ ∈ states(Γ), put Δ −→ Δ′.

The resulting graph, denoted T θ
0 , is called the initial tableau.

4.4 State elimination phase
During this phase we remove from T θ

0 states that are not
satisfiable in a TEHS. There are two reasons why a state Δ of
T θ

0 can turn out to be unsatisfiable: either satisfiability of Δ
requires satisfiability of some other (epistemic or temporal)
successor states which are unsatisfiable, or Δ contains an
eventuality that is not realized in the tableau. Accordingly,
we have three elimination rules (as two different rules deal
with epistemic and temporal successors): (E1E), (E1T),
and (E2).

Formally, the state elimination phase is divided into stages;
we start at stage 0 with T θ

0 ; at stage n + 1 we remove from
the tableau T θ

n obtained at the previous stage exactly one
state, by applying one of the elimination rules, thus obtain-
ing the tableau T θ

n+1. We state the rules below, where Sθ
m

denotes the set of states of T θ
m.

(E1E) If Δ ∈ Sθ
n contains a formula χ = ¬DAϕ and

Δ
χ

−→ Δ′ does not hold for any Δ′ ∈ Sθ
n, obtain T θ

n+1 by
eliminating Δ from T θ

n .

(E1T) If If Δ ∈ Sθ
n and Δ −→ Δ′ does not hold for any

Δ′ ∈ Sθ
n, obtain T θ

n+1 by eliminating Δ from T θ
n .

For the third elimination rule, we need the concept of
eventuality realization. We say that the eventuality ¬CAϕ
is realized at Δ in T θ

n if there exists a finite path Δ =
Δ0, Δ1, . . . , Δm (where m ≥ 0) such that ¬ϕ ∈ Δm and
for every 0 ≤ i < m there exist χi = DBψi such that B ⊆ A

and Δi
χi−→ Δi+1. Analogously, we say that the eventual-

ity ϕ Uψ is realized at Δ in T θ
n if there exists a finite path

Δ = Δ0, Δ1, . . . , Δm (where m ≥ 0) such that ψ ∈ Δm, and
for every 0 ≤ i < m, both Δi −→ Δi+1 and ϕ ∈ Δi hold.

(E2) If Δ ∈ Sθ
n contains a (temporal or epistemic) even-

tuality ξ that is not realized at Δ in T θ
n , then obtain T θ

n+1

by removing Δ from T θ
n .
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We check for realization of eventualities by running the
following iterative procedure that eventually marks all states
that realize a given eventuality ξ in T θ

n . If ξ = ¬CAϕ, then
initially, we mark all Δ ∈ Sθ

n such that ¬ϕ ∈ Δ. Then,
we repeat the following procedure until no more states get
marked: for every still unmarked Δ ∈ Sθ

n, mark Δ if there

is at least one Δ′ such that Δ
DBψ
−→ Δ′ for some B ⊆ A and

Δ′ is marked. The procedure for eventualities of the form
ϕ Uψ is analogous.

We have so far described individual rules and their im-
plementation; to describe the state elimination phase as a
whole, we need to specify the order of their application. We
need to be careful, as having applied (E2), we could have
removed all the states accessible from some Δ either along
the arrows marked with an epistemic formula χ or along
unmarked arrows −→; hence, we need to reapply (E1E)
and (E1T) to the resultant tableau to remove such Δ’s.
Conversely, having applied (E1E) and (E1T), we could
have thrown away some states that were needed for real-
izing certain eventualities; hence, we need to reapply (E2).
Therefore, we need to apply (E2), (E1E), and (E1T) in a
dovetailed sequence that cycles through all the eventualities.
More precisely, we arrange all eventualities occurring in T θ

0

in a list ξ1, . . . , ξm. Then, we proceed in cycles. Each cycle
consists of alternatingly applying (E2) to the pending even-
tuality (starting with ξ1), and then applying (E1E) and
(E1T) to the resulting tableau, until all the eventualities
have been dealt with, i.e., we reached ξm. These cycles are
repeated until no state is removed in a whole cycle. Then,
the state elimination phase is over.

The graph produced at the end of the state elimination
phase is called the final tableau for θ, denoted by T θ and its
set of states is denoted by Sθ.

Definition 4.1. The final tableau T θ is open if θ ∈ Δ
for some Δ ∈ Sθ; otherwise, T θ is closed.

The tableau procedure returns “no” if the final tableau is
closed; otherwise, it returns “yes” and, moreover, provides
sufficient information for producing a finite pseudo-model
satisfying θ; that construction is sketched in Section 5.

Example 1. In this example, we show how our procedure
works on the formula ¬C{a,b}p U D{a,c}p. Below is the com-
plete pretableau for this formula.

Γ
[0]
0

���
Δ

[0]
1

�
χ1

�
�

Δ
[0]
2

�

���
Δ

[0]
3

�
χ2

	

Γ
[0]
1

���
Δ

[0]
4

�

�

χ1

�
Δ

[0]
5

	
χ1

���

Γ
[0]
2

��� ����

���
Δ

[0]
6

�


χ1 �χ2

Δ
[0]
7

	
χ2

���
Δ

[0]
8




	
χ2

Γ
[1]
3

�
Δ

[0]
9

	

χ1 = ¬Da(p ∧ C{a,b}p); χ2 = ¬Db(p ∧ C{a,b}p);
Γ0 = {¬C{a,b}p U D{a,c}p = θ};
Δ1 = {θ,¬C{a,b}p, �θ, χ1}; Δ2 = {D{a,c}p, p, ��};
Δ3 = {θ,¬C{a,b}p, �θ, χ2}; Γ1 = {χ1,¬(p ∧ C{a,c}p)};

Γ2 = {χ2,¬(p ∧ C{a,c}p)}; Δ4 = {χ1,¬p, ��};
Δ5 = {χ1,¬C{a,b}p, ��}; Δ6 = {χ1,¬C{a,b}p, χ2, ��};
Δ7 = {χ2,¬C{a,c}p, ��}; Δ8 = {χ2,¬p, ��};
Γ3 = {�};Δ9 = {�, ��}.

The initial tableau is obtained by removing all prestates
(the Γs) and redirecting the arrows (i.e, Δ1 will be connected
by unmarked single arrows to itself, Δ2, and Δ3). It is easy
to check that no states get removed during the state elimi-
nation stage; hence, the tableau is open and θ is satisfiable.

We now briefly mention how to modify the above proce-
dure for the asynchronous case. The only difference occurs
in the (DR) rule: we now longer require that prestates pro-

duced during the application of this rule to a given state Δ[n]

should have the same time stamp as Δ (namely, n). A brief
analysis of the procedure shows that this modification does
not change the outcome of the procedure for a given for-
mula. This, in particular, implies that the satisfiability-wise
equivalence of synchronous and asynchronous semantics.

5. SOUNDNESS, COMPLETENESS,
AND COMPLEXITY

The soundness of a tableau procedure amounts to claim-
ing that if the input formula θ is satisfiable, then the tableau
for θ is open. To establish soundness of the overall proce-
dure, we use a series of lemmas showing that every rule by
itself is sound; the soundness of the overall procedure is then
an easy consequence. The proofs of the following three lem-
mas are straightforward.

Lemma 5.1. Let Γ be a prestate of Pθ such that M, (r, n) �

Γ for some TEM M and point (r, n). Then, M, (r, n) � Δ
holds for at least one Δ ∈ states(Γ).

Lemma 5.2. Let Δ ∈ Sθ
m, for m ≥ 0, be such that M, (r, n) �

Δ for some TEM M and point (r, n), and let ¬DAϕ ∈ Δ.
Then, there exists a point (r′, n′) ∈ M such that ((r, n), (r′, n′)) ∈
RD

A and M, (r′, n′) � Δ′ where Δ′ = {¬ϕ}∪
S

A′⊆A{DA′ψ |
DA′ψ ∈ Δ } ∪

S

A′⊆A{¬DA′ψ | ¬DA′ψ ∈ Δ }.

Lemma 5.3. Let Δ ∈ Sθ
m, for m ≥ 0, be such that M, (r, n) �

Δ for some TEM M and a point (r, n). Then, M, (r, n +
1) � �(Δ) where �(Δ) = {ϕ | �ϕ ∈ Δ }.

Lemma 5.4. Let Δ ∈ Sθ
m, for m ≥ 0, be such that M, (r, n) �

Δ for some TEM M and a point (r, n), and let ¬CAϕ ∈ Δ.
Then, ¬CAϕ is realized at Δ in T θ

m.

Proof idea. Since ¬CAϕ is true at s, there is a path in M
from s leading to a state satisfying ¬ϕ. Since the tableau
performs exhaustive search, a chain of tableau states corre-
sponding to those states in the model will be produced. �

The next lemma is proved likewise.

Lemma 5.5. Let Δ ∈ Sθ
m, for m ≥ 0, be such that M, (r, n) �

Δ for some TEM M and a point (r, n), and let ϕ Uψ ∈ Δ.
Then, ϕ Uψ is realized at Δ in T θ

m.

Theorem 5.6. If θ ∈ L is satisfiable in a TEM, then T θ

is open.
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Proof sketch. Using the preceding lemmas, we show by
induction on the number of stages in the state elimina-
tion phase that no satisfiable state can be eliminated due
to any of the elimination rules. The claim then follows from
Lemma 5.1. �

The completeness of a tableau procedure means that if
the tableau for a formula θ is open, then θ is satisfiable in a
TEM. In view of Theorem 3.10, it suffices to show that an
open tableau for θ can be turned into a TEHS for θ.

Lemma 5.7. If T θ is open, then a (synchronous) TEHS
for θ exists.

Proof sketch. The TEHS H for θ is built by induction on
the temporal levels, in order to take care of synchrony. The
main concern is to ensure that all eventualities in the resul-
tant structure are realized (all other properties of Hintikka
structures easily transfer from an open tableau). We alter-
nate between realizing epistemic eventualities (formulae of
the form ¬CAϕ) and temporal eventualities (formulae of the
form ϕ Uψ).

We start by building the 0th level of our prospective Hin-
tikka structure from the level 0 of the open tableau. For each
state Δ[0] on this level, if Δ[0] does not contain any epis-
temic eventualities, we define epistemic component for Δ[0]

to be Δ[0] with exactly one successor reachable by ¬DAψ,
for each ¬DAψ ∈ Δ[0]; if, on the other hand, ¬CAϕ ∈ Δ[0],
then such a component is a tree obtained from a path in
the tableau realizing ¬CAϕ at Δ[0] by giving each compo-
nent of the path “enough” successors, as described above.
We recursively repeat the procedure extending the current
tree by attaching to its leaves associated components. As all
the unrealized epistemic eventualities are propagated down
the components (hence, appear in the leaves of the tree), we
can stitch them up together to obtain a structure in which
epistemic eventuality is realized.

Now, having built the 0th level of our prospective Hin-
tikka structure, we take care of realizing all the temporal
eventualities contained in the states of level 0. This is done
exactly as in the completeness proof of the tableau procedure
for LTL: we define the temporal component for each Δ[0]

as follows: if Δ[0] does not contain any temporal eventuali-
ties, then we take Δ[0] with one of its temporal successors;
otherwise, we take a temporal path realizing ϕ Uψ ∈ Δ[0].
As eventualities are again passed down, we can stitch up an
infinite, or ultimately periodic, path realizing all the even-
tualities contained in the states making up the path.

Next, we repeat the procedure inductively. For the mth
epistemic level, we independently apply to each state on
this level the procedure described above for level 0, so that
“epistemic structures”unfolding from any two points on level
m are disjoint, and also give to each newly created point a
“history” consisting of a path of m−1 states of the form {�}
(so that we do not create any new epistemic eventualities at
the levels we have already “processed”). Having fixed all
the epistemic eventualities at the mth level, we repeat the
procedure described in the previous paragraph to fix all the
temporal eventualities contained in states of level m.

Thus, we produce a chain of structures ordered by in-
clusion. Eventually, we take the (infinite) union of all the
structures defined at the finite states of that construction,
and then put H(Δ[n]) = Δ[n] for every Δ[n], to obtain a
TEHS for θ. �

Theorem 5.8 (Completeness). Let θ ∈ L and let T θ

be open. Then, θ is satisfiable.

Proof. Immediate from Lemma 5.7 and Theorem 3.10.

As for complexity, for lack of space, we only state that
it runs within exponential time (the calculation is routine).
Therefore, the CMATEL(CD+LT)-satisfiability is in EX-
PTIME, which together with the EXPTIME-hardness result
from [4], implies that it is EXPTIME-complete.

6. CONCLUDING REMARKS
We developed an incremental-tableau based decision pro-

cedure for the full coalitional multiagent temporal-epistemic
logic of linear time CMATEL(CD+LT). In this case, there
is no essential interaction between the temporal and the epis-
temic dimensions, which makes the tableau construction eas-
ier to build and less expensive to run, by reducing it to a
combination of tableaux for LTL and for the (epistemic)
logic CMAEL(CD) developed in [2]. We are convinced
that our procedure is—besides being rather intuitive—practi-
cally much more efficient than the top-down tableaux, e.g.,
developed for a fragment of our logic in [3], and hence bet-
ter suited to both manual and automated execution. It is
also easily amenable to modifications suited to reasoning
about subclasses of distributed systems, e.g., those with a
unique initial state. The branching time case, which will be
considered in a sequel to this paper, is essentially a combi-
nation of tableaux for CTL with those for CMAEL(CD).
On the other hand, the development of tableau-based pro-
cedures for those logics from [4] whose satisfiability problem
has EXPSPACE lower bound is an open challenge.
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